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Abstract

Polymer-matrix composite material and structural adhesive repair and manufacturing have
significant environmental costs. These costs were recently documented based on current and
anticipated future Department of Defense (DOD) use of these materials. The principal issues for
reducing the environmental impact and its associated cost are (1) reduction in hazardous waste
by eliminating shelf-life limitations, (2) reduction in nitrogen oxides by replacing global heating
of the part with localized heating, (3) reduction in volatile organic compound (VOC) emissions
by accelerated curing and containment, and (4) reduction in hazardous waste by minimizing
production debris through processing step management. The predicted reduction in hazardous
waste, which affects both raw materials and waste-disposal costs, is 78% for composite materials
and 95% for adhesives. Nitrogen oxides and VOC emissions can be reduced by 100% and 50%
by replacing autoclave curing with radiation curing. Electron-beam (E-beam) curing has
successfully been applied to E-beam-curable prepegs, adhesives, and vacuum-assisted resin
transfer molding (VARTM) resins while maintaining process-specific viscosities and
application-specific thermal performance. For the first time, there is credible evidence that
E-beam-curable resin systems can be formulated to have sufficient toughness while maintaining
other required process and performance criteria. In this work, both free radically and cationically
cured E-beam resin systems have been formulated.
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1. Introduction

The electron-beam (E-beam) accelerator is a source of ionizing radiation that can generate
ionic species, free radicals, and molecules in excited states capable of initiating and sustaining
polymerization. Depending on the chemistry of the resin system being irradiated, polymerization
can occur by free-radical as well as ionic mechanisms.  The polymerization of
acrylic/methacrylic systems, maleic and fumaric polyester resins, and thiolene systems proceeds
via free-radical mechanisms without initiators. E-beam-induced polymerization of nitroethylene
proceeds via anionic mechanisms, and epoxies are polymerized cationically with the appropriate
catalyst under E-beam irradiation. Of these systems, free-radical-cured systems based on
acrylate and methacrylate functionality and cationically cured epoxies catalyzed using
diaryliodonium or triarylsulfonium salts like diphenyliodium hexalfluoroantimonate or
triarylsulfonium hexalfluoroantimonate have shown the most promise for composites
applications.  Acrylate/methacrylate-based free-radical-cured systems have been studied
extensively. These systems provide high reactivity, and they have good stiffness, good control

over processing viscosity, and very long shelf life.

Among the shortcomings associated with such systems are high cure shrinkage (8-20%), the
potential for oxygen inhibition, and low glass transition (Tg) relative to high-temperature
thermally cured epoxies. Cationically cured epoxies require a photoinitiator to enable
polymerization. Cationically cured epoxies offer low shrinkage; exhibit high T, are not
inhibited by oxygen; and do not require curing agents, as do their thermally cured counterparts.
On the other hand, cationic systems tend to cure more slowly than acrylate/methacrylate systems,
and the photoinitiators are easily poisoned by nucleophilic contaminants, which can often be

found on the surfaces of reinforcing materials or as part of epoxy resin compositions.

In this work, both free radically and cationically cured E-beam resin systems are being
formulated. Cationic systems have been employed primarily for prepreg resin formulation, as

discussed in section 2, while free-radical systems based on interpenetrating polymer networks




have been used to formulate vacuum-assisted resin transfer molding (VARTM) resins and

adhesives, as discussed in sections 3 and 4, respectively.

2. E-Beam Prepreg Resin Formulation

2.1 Introduction to E-Beam Prepreg Resin Formulation. Cationic resin formulation
efforts follow a basic building-block approach to develop new toughened E-beam-curable resins
for composite matrix materials. Sufficient quantities of the new resin are produced to develop

chemical and mechanical properties, evaluate repair on an aircraft structure, and demonstrate the

producibility of one structural component.

Over the past 5 years, hundreds of model formulations of E-beam-curable resins have been
prepared. Using epoxy backbone and functionality, the structure/property relationships of
E-beam-curing resins have been similar to those of thermal-curing resins. In addition, over
75 modifiers have been tried, with little success in improving the property of the resins. With
thermoplastic and elastomeric toughening, either single or multiple phases, the modified resins

still exhibit the high cross-link density characteristics of the epoxy continuous phase.

It is believed that chain extension of the epoxy continuous phase is critical to enable the
modifiers to nucleate their energy dissipation. This has not yet been attempted with
E-beam-curing resins. It is important that a ductile fracture pattern be achieved. It is also
important to lower the cross-link density to allow for plastic flow and to raise the composite

interlaminar shear strength by increasing shear bonding.

The primary function of modifiers is to toughen the resin. The addition of modifiers to the
rigid extenders should not reduce the resin modulus at elevated temperature. For cationic curing

epoxies, the modifier requirements are as follows:

- an epoxy-compatible low-molecular-weight oligomer or monomer;




« a nonnucleophillic, aromatic, or heterocyclic ring in the backbone; and

» stability at ambient temperature.

The modifier can be either a difunctional coreactant with a very high percent of reactivity or a

multifunctional modifier.

The objective of this task is to reformulate the E-beam-curing cationic resin, CAT-M, and
associated adhesives to extend the toughness, durability, and thermal performance to meet
250 °F/wet service for aircraft repair and remanufacturing. To date, cationic resins for prepreg
applications meet T, and modulus goals but provide very poor interlaminar strength and

toughness.

All matrix resins and adhesives are modified epoxies (a blend of four epoxies—Dow 742,
556, 332, and 439) cured using diphenyliodonium hexaflouroantimonate cationic catalyst. The
first stable species, a Bronsted acid of H' SBFG' along with H'F, is believed to be responsible
for breaking the epoxy ring, ionizing the hydrbxyl, and propagating via homopolymerization,

which is the same as thermal cure (Figure 1).

+
Phol+SbFg~ + e —s= Ph I+ + Ph~ + SbFg~ —-H—> HF + SbF5-

H- -,AQ-H + HF —= Polymer
R R

Figure 1. Example of Cationic-Based Epoxy Initiation Reaction.

Although the propagation steps (Figure 2) and the chemistry are the same as in thermal cure,
the mechanism to cure to a high level of completion in a solid state with electronically excited

molecular species is unknown.
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Figure 2. Example of Cationic-Baséd Epoxy Propagation Reaction.

Trace water in the raw material can result in a 1,2 diol or glycol, which can react with groups
to form a highly cross-linked brittle matrix. Cationic resins need to be toughened before they are
of practical value, especially for aircraft applications. The most common way to achieve
toughening is to coreact alcoholic hydroxyls in situ during curing. However, the usual reduction
of modulus and T, will occur. As with thermal curing, a balance between toughness and Tj or
modulus is needed. Although the propagation mechanism is the same as in thermal cure,
radiation-induced excited molecular intermediates drive the reaction to completion in the solid
state. Thermal homopolymerization cures follow classic time, temperature, transformation
(TTT) diagrams, where T, is no more than 20 °C higher than Teure- However, E-beam curing

totally violates the classic TTT diagrams and T can routinely be as much as 150 °C higher than

Tcure-

2.2 E-Beam Prepreg Resin Selection Criteria. The following are the criteria used for
prepreg resin downselection. Studies found that each resin formulation had to pass all the tests

indicated. If one test failed, no further testing was conducted for that particular formulation.




(1) Radiation Cure Properties (determined from gamma calorimetry):

o Gelation < 40 kGy. All of the cationic-initiated epoxies that were studied evidence

gelation at doses less than 15 kGy.
« Curing dose < 120 kGy. Curing dose depends on the type of the initiator used.
(2) Dynamic Mechanical Analysis (DMA):

« DMA modulus > 350 ksi (2.4 GPa). The modulus of most epoxy resins is about 450 ksi
(3.1 GPa). However, the modulus slowly drops off as temperatures approach the T,.

« T, > service temperature + 30 °C.
(3) DMA After 2 hr at 177 °C Postcure:

« Postcure DMA modulus < 10% different from DMA modulus prior to postcure. This test
is to gauge the degree of cure from the initial E-beam curing. A difference between the
two values of greater than 10% indicates that significant residual uncross-linked species
remained after the initial cure.

(4) DMA After 24-hr Water Boil:

» Weight gain < 3%.

« DMA modulus after water boil < 10% different from DMA modulus prior to

conditioning.

« Wet T, > service temperature + 20 °C.




2.3 E-Beam Prepreg Resin Formulation Approach. The goal of this formulation effort
was to improve the toughness of baseline resins. Two types of toughening agents were added to
the epoxy formulations: (1) polyethersulfone (PES) and (2) thermoplastic acrylic. The two best
formulations, T-11 and T-14, were selected for further evaluation based on the gamma
calorimetry and DMA data. Gamma calorimetry was used to determine the gel point. The
E-beam dose at which the temperature begins to rise is defined as the gel point. DMA was used

to determine the T,. Downselected resins had to meet the requirements listed in section 2.2 prior

to toughness evaluation.

A series of nine model formulations was investigated (Table 1), including a dendrimer
(Boltorn EZ, obtained from YLA, Inc.) that is an epoxy-terminated polyol with a viscosity of
about 25,000 cps at ambient temperature. Reactive liquid rubbers such as Hycar rubber and
related tougheners provide a neat balance of properties if precipitated during cure into a second
phase with particle size in the 1-5 pm range. In E-beam curing, the precipitation of the rubbery
phase was not achievable due to instant gelation. Therefore, the second-phase emulsion must be
accomplished in the liquid state prior to cure. Several epoxies with varying polarities, with and
without modifiers, were formulated with the dendrimer and screened via ultraviolet cure. All
formulations cured to clear single-phase castings. The model expected to have the best chance of
second-phase formation, M-25, was E-beam-cured along with M-24 as a control. Hydrogenated
Bis-A (1510), which results in cycloaliphatic structures, accelerates reactions compared to its
nonhydrogenated counterpart (332). However, all of the experiments performed to date

indicated that there was no phase separation in these samples.

The cured Model M series resins were tested by DMA, as shown in Table 2. M-22 was left
in the oven overnight and gelled; no DMA data were obtained. Comparing M-21 and M-23 with
controls (M-11, M-13, and M-16), the multifunctional chain extender used in M-21 looks very
encouraging. Past models with difunctional reactants indicated incomplete reaction. Although
the initial modulus and T, are lower for M-21 than for the controls, a 50% retention of modulus
at higher temperature, 150 °C, was observed for M-21. The modifier used in M-21 warrants
further investigation. This modifier can be added to prepreg and adhesive resins but will not be

used for the VARTM resins because of its excessively high viscosity.




Table 1. Model Formulations

l M Series

11

13

[ 16

21

23

| 24

25

[332

100

94

100

60

80

556

70

70

1510

30

30

Chain extender-1
(GP)

15

Chain extender-2
(GP)

Dendrimer
Boltom-EZ

TBBPA

542

DPI-1

Notes: GP = No Significance. Nomenclature only.
TBBPA = Testbromobisphenol A.

DPI-1 = Diphenyliodiumhexaflouroantimonate.

Table 2. DMA Data

[ M Series | 11 13 16 21 23 24 25
T, (°C) 170 170 175 140 150 150 125
Temperature
at 50% of 143 118 96 152 107 142 125
modulus
Heg“fal q | 261 | 305 345 256 147 207 262
‘[‘(‘}OP;] U8 | 2.1] [2.4] [1.77] [1.0] [1.4] [1.8] |

The difunctional chain extender used in M-23 reduces the initial modulus by 50%. This
model will be eliminated unless significant toughening is observed in the resins. M-24 and
M-25, with 8% dendrimer incorporation, were poorer in elevated-temperature properties. The
results showed the expected plasticization from the modifier. The dendrimer did not precipitate
as a second phase. The latest data indicate that the key to obtaining a successful precipitation of
dendrimer lies in the blending of the single-phase epoxies used, including not only the types of

epoxies but also the proportion of each epoxy in the blend. Two blends of single-phase epoxy



with the modifier precipitated out as a second phase after curing are currently being investigated

and show promise. These resins will be E-beam-cured and evaluated.

As expected, both types of thermoplastic modifier reduce the rate of curing, although
thermoplastic (TP) acrylic appears to affect it less. TP acrylic is a micropulverized powder
added like a filler and is a dispersed second phase with a partially solubilized and bonded particle
interface. It did not chemically inhibit curing. Both T-11 and T-14 resins contain TP acrylic as a
toughening agent. The DMA spectroscopy results for the two resins cured at 200 kGy are shown
in Figures 3-6 for dry and wet (48-hr water boil) T-11 and dry and wet T-14. Dry T, from E*
for both systems is around 200 °C; wet Ty is about 170 °C. However, the DMA curves for T-14
are much better than for T-11, especially the much smaller B peak from the tan & curve of T-14.
The B peak in the DMA is likely the low-molecular-weight components produced from the
low-dose (<10 kGy) E-beam, which was used to prevent cracking of the sample during cure.
Such short segmental chains created during the low-dose pass affect the final mechanical
properties. However, in the case of composite curing, the exotherm during curing will likely

dissipate through the carbon fibers, which should prevent the low-molecular-weight components,

such as the B peak, from forming.

2.4 E-Beam Prepreg Resin Formulation Results. The resins that met the downselection
criteria were further evaluated for initial mechanical properties. The dynamic moduli of the neat
resins were also measured in a Rheometrics RDS-II dynamic mechanical spectrometer from the
torsion of rectangular coupons. One set of coupons of each resin type was conditioned in a
humidity cabinet set at 66 °C/95% relative humidity until saturated with moisture. Another
coupon set of each resin type was desiccated prior to testing. The tests on dry and wet specimens
were run at a scan rate of 5 °C/min. From plots of the data (Figures 3-6), it is apparent that the
only unambiguous measure of T, temperature can be obtained from the tan & curves. The Ty’s
from the tan & curves for dry and wet specimens of T-11 are 230 °C and 218 °C, respectively.
The corresponding dry and wet T,’s for T-14 are 220 °C and 205 °C, respectively; they are very
similar to the aforementioned DMA data. The wet T, is therefore only slightly lower than the

corresponding dry T, for each material, although the shoulder in the tan & curves becomes more
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.. BE-beam-cured- resins: is compared ‘with: that. of thermally’ cured 35016 in Figure 7.. “At 150 °C
" (300 °F),: for..example, 3501-6 retains approximately 75% of its room-temperature ‘storage
-modulus, while the corresponding moduli retention for dry and wet E-beam-cured resins is 50%
-and 42%, respectively. . The poor retention of properties for the E-beam-cured resins can be

. -attributed again to the low-molecular-weight components formed during cure. As can be seen
from the RDS curves, the B peaks are similar to those from DMA. -This experiment correlating

the storage modulus with temperature is repeated for composite specimens.
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Figure 7. Retention of Dynamic Storage Modulus of Neat T-11, T-14, and 3501-6 at
Various Temperatures.

2.4.1 Resin Density and Shrinkage. The resin density and shrinkage of T-14 are shown in
Table 3. The difference in the cured and uncured resin density is negligible. The T-14 resin did

not shrink but expanded slightly after curing at an E-beam dose of 200 kGy. Similar behavior
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Table 3. Physical Properties of T-14 Resin

— e————————————— T —— S — T ———————

Density Condition Volumetric Shrinkage | Linear Shrinkage

(g/ml) (%) (%)
e —

1.2124 Uncured — —_

1.2121 E-beam: 200 kGy -0.025 -0.008

E-beam: 200 kGy
1.2123 thermal: 2 br at 200 °C -0.008 -0.003

was observed for the resin postcured at 200 °C for 2 hr after E-beam curing. The postcure was

conducted to relieve residual stresses caused by the high-energy E-beam curing.

2.4.2 Differential Scanning Calorimetry. A cross section of the resin plaques, T-11 and
T-14, revealed a variation in color from the surface (reddish brown) to the midplane (yellowish
brown).. Samples from both of these areas were analyzed by DSC. The sample from the T-11
interior of the plaque did not display any exotherm on heating in nitrogen up to 300 °C; however,
the sample from the surface of the plaque displayed an exotherm (~3.3 mcal/mg) beginning at
about 100 °C, indicating an advancement of cure with the thermal energy supplied. Similar
results were observed for the T-14 sample. The center of the T-14 appeared to be fully cured
when analyzed by DSC; however, the surface of the T-14 panel underwent additional cure in the
DSC, exhibiting an exotherm of approximately 9.5 cal/g and peaking at about 135 °C. The color
of the surface specimen also changed from reddish brown to yellow at the end of the run. These
results indicate a nonuniform cure through the thickness of the as-received plaque, with the

degree of cure higher in the interior than at the surface.

2.4.3 Fracture Toughness. The fracture toughness of the neat resin was determined from
compact tension tests in accordance with American Society for Testing of Materials (ASTM)
E399-83. Test specimens with dimensions shown in Figure 8 were sectioned from the resin
plaque, and notches were machined as indicated. One batch of specimens was then dried for a
minimum of 48 hr in a vacuum oven at 40 °C and tested under ambient conditions. Two more
batches of specimens were isothermally aged at 121 °C—the T-11 for 54 hr, the T-14 for 102 hr,

and both for 168 hr—and tested at room temperature. At least five specimens were tested for the
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Figure 8. Schematic of Compact Tension Test Specimen (Dimensions in Inches).

unaged baseline and each aging condition, and data were collected for four crack extensions in
each specimen to give a minimum of 20 measurements of fracture toughness for each specimen
batch. The test results are shown in Tables 4 and 5 for T-11 and T14, respectively. The data are
fairly consistent and indicate a slight increase in fracture toughness with aging, possibly due to
the additional thermal cure that occurs under these conditions. The fracture toughness of the

unaged T-14 material is approximately 40% higher than that of unaged T-11.

2.4.4 Flexural Properties. Flexural test specimens were sectioned from the T-11 plaque
with faces perpendicular to the x and z directions. The latter specimens bowed after being
sectioned, suggesting that cure shrinkage at the midplane of the plaque is greater than that at the
surface (also observed in DSC studies). The results of flexural tests on as-fabricated (and
vacuum dried) specimens, performed under ambient conditions, are summarized in Table 6.
Although the midplane of the plaque appears to have a higher degree of cure than the surface, the
results from Table 6 indicate no significant differences in the flexural properties of the two
regions. However, the properties appear to be lower than the corresponding flexural stiffness

and strength of neat thermally cured 3501-6 epoxy.

One batch of T-14 flexural test specimens was conditioned at 66 °C/95% relative humidity

(RH) until saturated with moisture, while a second set was desiccated prior to testing.
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Table 4. Fracture Toughness of T-11 Resin

— _ e e
Specimen '
No. Conditioning Fracture Toughness Average
(psi. in®) (£s.dev.)
KQi KQ, KQs KQ4
T-11-15 265 271 282 255
T-11-17 | Dried 48 hr at 285 240 277 257
T-11-20 [40°Cin 215 229 301 279 245 +30
T-11-12 | vacuum oven 221 232 228 224

l T-11-14 215 211 207 204

" T-11-02 271 285 291 281
T-11-08 284 287 287 270

1119 | 48002 At o5 273 278 260 | 27812 ||
T-11-01 274 278 276 258

T-11-04 \ 262 289 302 291

T-11-03 292 297 299 301

T-11-10 273 286 290 284

T11-11 aAtgfgllfg ;I 281 294 204 28 | 03415
T-11-13 | o 302 307 323 295 *
T11-16 246 290 297 208

T-11-18 I 309 301 285 ]

Three-point flexural tests were conducted at ambient temperature and 82 °C for both wet and dry
T-14 specimens, with a minimum of six specimens for each material/test condition. The results
are summarized in Figures 9 and 10. The flexural strengths are not as high as expected (or
observed for thermally cured epoxies such as 3501-6), which may be due to the significant void
content of the neat resin plaques. The flexural stiffness of the neat resin shows a signiﬁcant
decline with temperature at relatively low temperatures. For example, the flexural stiffness of
dry T-14 is 410 ksi at room temperature; this modulus drops to 79% and 57% of the room-
temperature values, respectively, at temperatures of 82 °C (180 °F) and 104 °C (220 °F).

2.5 E-Beam Prepreg Resin Conclusions. Incorporation of dendrimers into a single-phase
epoxy was successful. The dendrimer precipitated in the epoxy mixture as a second phase,
resulting in resin with greater ductility and toughness than conventional one-phase epoxy.

Investigations of model formulations will continue, in an effort to optimize dendrimers and chain
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Table 5. Fracture Toughness of T-14 Resin

—

Specimen
No. Conditioning Fracture Toughness Average
(psi.ino‘ ) (£s.dev.)
_ | KQ | KO | KOs KQu
T-14-05 326 340 365 398
T-14-11 : 330 340 347 327
TI414 | oy oo o M3 351 |39 359 368 | 340419
T-14-17 | vacuum oven 328 340 350 361
T-14-18 334 337 337 354
T-14-19 330 304 334 313
I T-14-02 425 373 384 378
T-14-03 360 396 391 394
Toia04_| Aged 1020 316 355 384 | 400100
T-1409 | . 397 401 367 374 -
T-14-13 359 365 377 385
T-14-21 377 378 381 382
T-14-01 328 375 377 371
T-14-06 351 360 353 381
T-14-07 ﬁ;gfgllfg N 379 371 388 403 | 0.1s
T-1408 | .. 363 366 368 377 N
| T-14-12 355 371 374
| T1415 | | 367 366 386 | 388 i

formulations, the most promising one will be selected for further development. This formulation

will be used to prepreg AS4 carbon fibers at YLA, Inc. A small run (10 Ib) of prepreg will be

produced for initial evaluation of the prepreg quality and E-beam processing cycles. Additional

prepreg will be manufactured for full characterization of the final prepreg system. The

characterization will include physical and mechanical analyses at ambient and elevated wet

temperatures.

Photomicrographs and failure analyses using scanning electron microscopy

(SEM) will also be conducted to characterize the quality of composite laminate and fiber/matrix

interface properties.
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Table 6. Room-Temperature Flexural Properties of Neat T-11 Resin

Specimen Specimen Flexural Average Flexural Average
Category No. Strength (ksi) Modulus (Msi)
(ksi) (s.dev.) (Msi) (s.dev.)
T-11-X01 7360 — 0.445
T-11-X05 7005 6625 0.437 0. 433 J
A T-11-X06 6650 (635) 0.425 (0. 008)
T-11-X09 6435 — 0.427 ‘
|L T-11-X10 5630 — 0.431 4
T-11-Z10 6985 — 0.422
T-11-Z01 6540 6810 0.383 0. 389
B T-11-Z03 6885 (355) 0.384 (0.019)
T-11-Z07 7270 — 0.379 —
T-11-Z02 6380 — 0.375 —
T-11-Z06 7890 — 0.405 — |
C T-11-Z09 7020 7640 0.402 0.397
T-11-Z05 9510 (1435) 0.408 (0.016)
T-11-Z08 1 6150 = 0_._3741_ .

Notes: A = Specimens cut perpendlcular to x-axis.
B = Specimens cut perpendicular to z-axis and tested with surface from the plaque midplane in tension.

C = Specimens cut perpendicular to the z-axis and tested with the original plaque surface in tension.
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Figure 9. Flexural Strength of Neat T-11 and T-14, Dry and After Saturation, With
Moisture at 66 °C/95% RH.
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Figure 10. Flexural Modulus of Neat T-11 and T-14, Dry and After Saturation, With
Moisture at 66 °C/95% RH.

3. E-Beam VARTM Resin Formulation

3.1 Introduction to E-Beam VARTM Resin Formulation. VARTM has become an
important composites processing technique. In the VARTM process, the liquid resin converts
into a nontacky solid during cure. Curing is accomplished via chemical reactions between
monomers, which leads to the formation of a three-dimensional network. Energy for this process
can be supplied in various forms, such as heat or radiation. There are various sources for
radiation, including microwave, infrared (IR), ultraviolet (UV) light, and E-beam. Thermal
curing has traditionally been preferred over radiation curing for fabricating thick polymer-matrix
composites because of the limited penetration depth of radiation and the high cost of radiation
equipment. However, recent developments and better E-beam equipment has revived interest in
radiation curing. In addition to reduced processing time, E-beam curing offers many advantages

over traditional thermal curing, including the following:
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« unlimited material shelf life,
« reduced energy consumption,
« curing at selectable temperatures,

curing of complex-shaped parts with inexpensive tooling,

line-of-sight cure,

shorter curing time,
« lower health risk, and
« reduced cure shrinkage.

In order to take advantage of E-beam curing, the developed resin should form a partially
cured structure that can be easily transported for complete curing by E-beam. In addition, resins
that can be processed using nonautoclave techniques such as VARTM and RTM should be

developed to realize the signiﬁcant' cost savings associated with this technique.

32 E-Beam VARTM Resin Selection Criteria. The most important requirement for
VARTM resins is a viscosity of less than 500 cps at processing temperature. Presently available
and commercially used VARTM resins are based on epoxy or vinyl ester. The presence of
unsaturated bonds in vinyl-ester resin allows curing by several different methods. Vinyl-ester
resins have T,’s around 250 °F, but they exhibit very low toughness compared to commercially
available epoxy resins. On the other hand, thermally cured epoxy resins designed for VARTM
often have a low T,. The primary objective of this research is to develop a new generation of

toughened VARTM resins with the following properties: .
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» viscosity less than 500 cps at processing temperature,

« T, between 250 °F and 350 °F,

fracture toughness above that of presently available resins,

ability to be cured thermally as well as by radiation,

.

unlimited shelf life,
« environmental friendliness, and
« commercial availability or easily scaleable monomers.

3.3 E-Beam VARTM Resin Formulation Approach. Radiation can initiate free-radical or
jonic polymerization. In this program, a new generation of radiation-cured systems based on
free-radical curing is examined. This novel system uses interpenetrating polymer network (IPN)
synthesis. Figure 11 shows the chemistry of the developed resin forming the IPN. In addition,

work has been performed to develop cationic systems for VARTM application.

The curing process of an epoxy-vinyl-based IPN system, as shown in Figure 11, involves
step-growth as well as free-radical polymerization. The step-growth reaction takes place
between epoxy and amine, while free-radical curing brings about polymerization in the vinyl
group. As shown in Figure 11, the resin is-a mixture of difunctional epoxy; tetrafunctional
amine, a unique monomer with epoxy and vinyl functionality; and divinyl monomers. The resin
mixture is cured initially at low temperature, where the epoxy-amine forms a polymer network,
while the vinyl monomer remains unreacted inside the network. The epoxy end of the unique
monomer used in the resin becomes a part of the epoxy-amine network upon initial thermal
curing, while the vinyl end remains pendant on the network. This constitutes a C-stage structure.

The C-stage material is then cured completely by E-beam to form a second network of vinyl
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Figure 11. Chemistry of an IPN-Based VARTM Resin.

monomers or diluents. The polymerization of pendant vinyl groups along with the diluents
provides co-continuity between the two networks. The combination of two networks forms an

IPN. Since the two polymer networks were formed sequentially, it can be called a sequential

IPN.

The advanced feature of this formulation approach is that the resin can be tailored in various
ways to meet any specific property requirement. By varying the functionality of the epoxy
monomer, the cross-linking density of the C-stage system—and, hence, the T, of the cured
system—can be varied. The number of pendant double bonds on the epoxy-amine network can
also be varied, which affects the cross-linking density of the vinyl network with the epoxy-amine
network. The effect on the property of the cured system when the diluent is changed is also

measurable. The resin system shown in Figure 11 meets the viscosity requirement of the
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VARTM process and also provides a T, temperature in the range of 250 °F. To approach a T, of
350 °F, the cross-linking density of the C-stage network and the number of pendant double
bonds were varied. The composition of formulated high-T, resin was varied to form a high-T,
resin with moderate viscosity and a high-T, resin with low viscosity. The toughness of these
materials does not meet the standard set by epoxy-based VARTM resins. To improve the
toughness of developed IPN-based VARTM resins, two approaches were taken (Figure 12):

(1) synthesis of a new homo- or copolymer by varying the reactive diluent and

(2) modification of the existing polymer through the addition of a second polymeric

component.

Low-T, (250 °F) and High-T, (350 °F)
systems as a base resin

Invoke crazing Effect of Co-continuous

structure
l l y
Addition of rubber || Addition of dendritic Diluent selection

modifier polymer

Figure 12. Approach Used to Toughen the VARTM Resin.
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The first approach involved the use of diluents with different functionalities as well as
different backbone structures. The second approach is also called blending. Rubber is the most
commonly employed blending agent for the toughening of polymers. It provides a disperse
phase into a rigid plastic matrix and also provokes yielding of the matrix material. As a result,
the blend shows considerably higher fracture toughness than the parent polymer. However, in
order to achieve satisfactory performance, a certain degree of chemical interaction between the
resin and the modifier is required to improve the interfacial adhesion. To overcome this
limitation, a compatible rubber agent whose functionality is adjusted according to the chemical
nature of the matrix was added. In addition to the use of a rubber modifier, the second approach
also involved the use of dendritic polymers. These polymers have a functionality compatible
with the matrix that makes them soluble in uncured resin. However, during curing, they

precipitate from the solution and phase separate. The second phase results in overall toughening

of the two-phase blend.
3.4 E-Beam VARTM Resin Formulation Results

3.4.1 Resin Synthesis. As mentioned earlier, the developed resin based on an IPN system is
made up of two parts: the step-growth epoxy-amine part and the free-radical-curable vinyl part.
The base resins used in the study are CCM1, CCM2, and CCM3 (Table 7). They all contain
diluents but no rubber modifier. CCM1 is a low-Ty resin with low viscosity. CCM2 and CCM3
are the base resins with high T,. The viscosity of CCM2 is lower than that of CCM3.

Table 7. Base Resin Properties

Ty Viscosity
(cp)
30°C | 40°C | 50°C

Low (250 °F) 200 170 95 |
High (350 °F) | 340 135 125 |

High (350 °F) 1050 550 200

22




The replacement of diluents or addition of a modifier to these developed resins to increase

the toughness created a series of resins. The features and properties of diluents and rubber

modifiers investigated are shown in Table 8.

Table 8. Rubber Modifiers and Diluents Used for Toughening

Features Viscosity Functionality

___ — — (25°C)

D1 | Hard and high T, 8 cps Di-
D2 | Aromatic backbone — Di-
D3 | Flexible — Mono-
D4 | Flexible and high-impact strength 25 cps Di-
D5 | Cyclic group with high T, 11 cps Mono-
D6 | Low shrinkage 67 cps Di-
R1 | High elastomer content and high viscosity 1,500-2,500 poise Di-
R2 | High elastomer content and moderate viscosity 40-80 poise Di-
R3 | High elastomer content and moderate viscosity 20 poise Di-

The series of resins formulated using these constituents and base resin is tabulated with their
composition in Table 9. Each number in parentheses suggests the overall weight percentage of
that component in a resin mixture. Each of these sets was mixed thoroughly and degassed before
being cured at low temperature to form a C-stage structure. The C-stage material was then

exposed to E-beam for complete curing.

3.4.2 Determination of E-Beam Dose. To determine the optimum E-beam dose required for
cure, Fourier transform infrared (FTIR) spectroscopy was employed. Several samples. of one
formulation were C-staged and then exposed to varying levels of E-beam dose. The conversion
obtained as a result of E-beam exposure was then measured and compared. The range of E-beam
dose selected was from 0.5 Mrad to 30 Mrad because most of the radiation-cured systems
evaluated thus far cure between 7 and 25 Mrad. The plot of E-beam dose vs. percentage
conversion of vinyl group is shown in Figure 13. The conversion increases rapidly with an
increase in E-beam dose for low doses. Once the E-beam dose increases beyond 2 Mrad, the

increase in conversion slows down. Since the increase in dose also increases process cost, a
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Table 9. Developed Resin Composition

Set Base Resin Diluents Modifier
(Overall Percentage) (Overall Percentage)
CCM4 CCM1 ‘D1 (30) D2 (20) R1(5)
CCM5 CCM1 D1 (30) D2 (20) R1 (10)
CCM6 CCM2 D1 (30) D2 (20) R1(5)
CCM7 CCM2 D1 (30) D2 (20) R1 (10)
CCMS8 CCM3 D1 (25) D2 (25) R1 (5) I
CCM9 CCM3 D1 (25) D2 (25) " R1(10)
CCM10 CCM1 D1 (30) D2 (20) R2 (10)
CCM11 CCM1 D1 (30) D2 (20) R3(10)
CCM12 CCM2 D1 (30) D2 (20) R2 (10)
CCM13 CCM2 D1 (30) D2 (20) R3 (10)
CCM14 CCM3 D1 (25) D2 (25) R2 (10)
CCM15 CCM3 D1 (25) D2 (25) R3 (10) |
CCM16 CCM1 D3 (30) D2 (20) —
i CCM17 CCM1 D4 (30) D2 (20) —_
CCM18 CCM1 D5 (30) D2 (20) — ﬂ
CCM19 CCM1 D6 (30) D2 (20) —
CCM20 CCM2 D3 (30) D2 (20) —
] CCM21 CCM2 D4 (30) D2 (20) —_ |
CCM22 CCM2 D5 (30) D2 (20) —_—
CCM23 CCM2 D6 (30) D2 (20) —_
il CCM24 CCM3 D3 (25) D2 (25) —
CCM25 CCM3 D4 (25) D2 (25) —
CCM26 CCM3 D5 (25) D2 (25) —
CCM27 CCM3 D6 (25) D2 (25) — "

tradeoff exists between conversion and process economy. Based on that, for the present work, a

dose of 20 Mrad was selected as optimum.

3.4.3 Viscosity Evaluation. Resin viscosity is an important factor in VARTM processing.
The viscosity of the developed resin was measured at the beginning of the curing process at three
temperatures. Viscosity experiments were carried out on a Brookfield Model LVDV II + digital
viscometer. -Sample temperature was controlled with the Brookfield small-sample adapter and
Brookfield bath/circulator model TC-200. The viscometer consists of a fixed outer cylinder and

a spindle that rotates at a constant angular velocity. The spindle is connected to a torque spring,
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Figure 13. Percentage Conversion of Vinyl Group as a Function of E-Beam Dose.

which measures the frictional resistance offered by the sample. The viscometer converts the

resistance into viscosity.

All components of the synthesized resin, except the curing agent, were mixed and heated to
the desired temperature. The curing agent amine was added after the equilibrium temperature
was reached. Approximately 10 ml of sample was measured and used for viscosity analysis.
After the addition of amine, initial viscosity was measured. Viscosity data were collected at

various temperatures.

344 T, Measurement. The T, of the cured resin was measured using a DuPont 983
Dynamic Mechanical Analyzer (DMA) interfaced with a DuPont 9900 thermal analyzer. A
sample with dimensions of approximately 30 mm x 10 mm x 2.5 mm was prepared from the
cured resin matrix. The specimens were placed in the test grips, and the arm displacement was
zeroed. The heater assembly surrounding the sample provided a uniform temperature

environment.
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The DMA was run in fixed-frequency mode at 1 Hz. The peak-to-peak amplitude was kept
between 0.1 and 0.3 mm. The sample was heated at 5 °C/min to the final temperature of 200 °C.

The shear storage and loss moduli obtained were stored as a function of temperature.

3.4.5 Fracture Toughness Measurement. The energy required to fracture the cured
material surface was measured using the ASTM D5045 method. The test is designed to
characterize the toughness of plastics in terms of the energy per unit area of crack surface or

critical strain energy release rate, Gic, at fracture initiation.

Specimens for toughness testing were prepared according to the ASTM standard. The
sample was then sectioned to meet ASTM standards. The next step in preparing the specimen
after cutting is notching to initiate the crack. Once the notch was made, it was measured and
checked according to the ASTM standard. For each set under investigation, five specimens were
prepared. One specimen from each set was left unnotched to serve as a control specimen and to

enable determination of a compliance calibration curve.

3.4.6 CCMI-Based Systems. Figure 14 shows the initial viséosity of all the systems based
on CCM1 resin at various temperatures. The initial viscosity of all sets decreases with an

increase in temperature. They all exhibit viscosity significantly below the criteria required for

VARTM processing.

The viscosity, Tg, storage modulus E', Gg, and Kq data for CCM1-based resins are shown in
Table 10. Empty entries in the table indicate that the analysis was underway at the time of this
~ report. The combined analysis gives a broader view on the performance of the resin. CCM4 and
CCMS5, the systems with a rubber modifier added, show no change from the base resin in terms
of Tg. The plot of storage modulus and loss modulus as a function of temperature for the CCM4
system is shown in Figure 15. At Tyg, the material becomes rubberlike. Hence, the loss modulus
shows a peak at Tg temperature. For the CCM4 system, T, is well exhibited by a distinct peak of
loss modulus at 120 °C. Although the viscosity of the CCMS resin is higher than that of the base
resin CCM1, it is significantly lower than required by VARTM processing. The addition of
10-weight-percent (wt%) R1 rubber to the system increases the fracture toughness of the base
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Figure 14. Viscosity Analysis of CCM1-Based Modified Systems.
Table 10. Properties of CCM1-Based Modified Resins
B - Viscc-)-sity T E'at Room
(cps) T, Temperature Go Ko
30°C | 40°C | 50°C | °C) (GPa) (Jm? | (MPam®)
CCM4 | 693 | 450 | 307 | 117 325 — —
CCM5 1200 850 450 120 2.15 883.86 2.034
CCM10 735 565 363 95 — — —
CCM11 475 315 210 120 2.5 464.82 1.452
CCM16 | 1080 985 625 85 2.25 2458.84 —
CCM17 720 710 680 70 3.0 3959.72 —
CCM18 275 175 112 116 2.8 — —
CCM19 | 1512 885 | 540 72 25 4330.16 3.532

resin by approximately 134%. The addition of low-viscosity rubber R3 to the base resin, CCM1,
also results in a Ty of about 120 °C. However, the critical strain energy release rate at the

fracture initiation is less than that of the base resin.
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Figure 15. DMA Analysis of the CCM4 Resin System.

The effect of replacing the diluent of the CCM1 resin resulted in a low Ty of the modified
system. The diluents D3, D4, and D6—corresponding to resin systems CCM16, CCM17, and
CCM19, respectively—resulted in T, below 100 °C. These diluents were used because of their
flexible backbones. The resin systems with these flexible diluents failed at high fracture energy.
They exhibited fracture toughness values 4 to 6 times higher than those of the base resin, but at
the expense of the T,. The resin system CCM18 exhibited a T, value similar to that of the base
resin. The plot of storage and loss modulus as a function of temperature for the CCM18 system
is shown in Figure 16. The storage modulus shows the elastic energy stored by the system.
Generally, the storage modulus of the system decreases with the increase in temperature. As
seen in Figure 16, for the CCM18 system, the storage modulus remains unchanged up to 100 °C.
This characteristic of the system indicates higher fracture toughness. Most of the developed

systems showed acceptable storage modulus at room temperature.
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Figure 16. Storage and Loss Moduli as a Function of Temperature for the CCM18 Resin.

3.4.7 CCM2-Based Systems. The CCM2 resin is a high-T,; low-viscosity resin. The
modifications used for the CCM1 system were also applied to the CCM2 system. The viscosity
analysis of the modified CCM2 system is shown in Figure 17. The results of fracture toughness
and viscosity analysis along with T, analysis are shown in Table 11. The cured CCM2 resin has
higher cross-linking than the CCM1 resin, which gives a higher T, for the CCM2 resin.
However, the increase in cross-linking density reduces the toughness of the system. It has been
shown that the addition of rubber to a highly cross-linked system does not provide signiﬁcant
improvements in toughness [1]. However, the system under investigation, CCM2, does not fall
in that highly cross-linked category. Hence, little attempt was made to increase the toughness
via the addition of rubber modifiers. The addition of 5 wt% rubber (CCM6) to the CCM2-based
resin yields a fracture toughness of 487.22 J/m?. Further addition of rubber modifier results in

deterioration of toughness.

Another common approach to increase the toughness of the highly cross-linked materials is

to blend them with the ductile tough materials. Here, a similar concept was adopted in the form
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Figure 17. Viscosity Analysis of CCM2-Based Modified Systems.
Table 11. Properties of CCM2-Based Modified Resins
E' at Room
Viscosity Ty Temperature Gic Kic
(cps - 50 °C) (°C) (GPa) (J/m?) (Mpa.m®?)

e T —— e —— e ————————————————
CCM6 267 148 2.15 487.22 1.625 |
CCM7 392 150 2.5 289.35 1.079
CCM12 309 142 1.75 — —
CCM13 264 152 — 367.93 —
CCM20 465 99 3.0 315.45 —
CCM22 375 155 1.55 379.11 1.268
CCM23 467 75 2.0 — —

of diluent replacement. The CCM20 to CCM24 resins show the effect of diluent on T,. Since,
the CCM21 resin could not be cured, it is not included in Table 11. The use of diluent with
flexible backbone such as D4 and D6 reduced the T, of the base resin dramatically. The addition
of D5 diluent with cyclic backbone to the base resin (CCM22) imparts toughness similar to the
CCM13 system with rubber modifier R3. Figure 18 shows the storage and loss moduli as a

function of temperature for the CCM7 system. The plot of loss modulus vs. temperature shows a
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Figure 18. Plot of Storage and Loss Modulus for the CCM7 System.
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single peak at 150 °C for the rubber-modified CCM7 system. The storage modulus values for

the other systems are shown in Table 11.

3.4.8 CCM3-Based Systems. The CCM3 system is similar in C-stage structure to the CCM2
system. However, the diluent content makes this system viscous compared to CCM2. The initial
viscosity of the CCM3-based modified resin at various temperatures is shown in Figure 19. The
VARTM process allows the use of temperatures higher than room temperature. At 50 °C, the

viscosities of the modified resins fall close to the limit for VARTM processing.
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Figure 19. Initial Viscosity of the CCM3-Based Toughened Systems.

Table 12 shows the rheological, thermomechanical, and mechanical properties of
CCM3-based modified systems. CCMIS5 resin is the base resin CCM3 with the addition of
rubber modifier R3. This system exhibited high toughness but low T, CCM26, the system
containing the D5 diluent, demonstrated an excellent T;. The toughness of the CCM26 system is
also comparable to that of the rubber-modified CCM14 resin. The DMA analysis of cured the
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Table 12. Properties of CCM3-Based Modified Resins

E' at Room
Viscosity T, Temperature Gicin Kic
(cp at 50 °C) (°C) (GPa) (J/m?) (Mpa.m®®)
—— e — — ot ettt —
[ccms 505 160 3.15 — —
CCM9 1,000 156 2.6 — — Il
CCM14 495 144 2.65 472.49 —
CCM15 565 139 2.75 647.42 —
CCM24 900 — — 233.46 1.0227
CCM26 860 165 2.15 472.22 1.492
i CCM27 950 120 2.85 — —

CCM26 system is shown in Figure 20. The CCM3-based systems all show exceptionally high

values of storage modulus at room temperature, as shown in Table 12.

0 50 100 15 200 250

Temperature (°C)

Figure 20. Thermomechanical Analysis of CCM26 (CCM3 With Diluent D5 Added).

3.5 E-Beam VARTM Resin Conclusions. The toughening of base free-radical-cured

VARTM resin was carried out by the addition of a rubber modifier and replacement of the
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diluent. The addition of high-viscosity rubber R1 to low and high-T; resins increased the
toughness without affecting the T,. Although the viscosity was also increased, it remained
within the range required by the VARTM process. The addition of moderate-viscosity rubber
(R2 and R3) did not demonstrate the performance achieved with the R1 rubber modifier.

The approach of replacing the diluent of the base resin to increase the toughness was selected
because the diluents form a co-continuous structure upon curing, which, in turn, governs the
properties of the cured resin. The selection of diluents with a flexible backbone such as D3, D4,
and D6 yielded high toughness, but at the expense of Tg. The appropriate diluent was one with a
cyclic or hard backbone (e.g., D5). The resin mixture with the D5 showed an increase in

toughness without sacrificing the thermomechanical properties of the cured material.

Overall, most of the modified systems exhibited viscosity within the range required for
VARTM processing. They achieved or surpassed the Ty of vinyl-ester resin, while providing the
high toughness of epoxy-based VARTM resin.

Future work is aimed at the use of dendritic polymers to increase the toughness of the base
resin. Also, the issue of combining the rubber modifier with the diluent is unexplored.
Significant potential exists to increase the toughness of the base resin if a tough diluent such as
D5 can be combined with a rubber modifier such as R1. Microscopic examination of the
toughened material will also be addressed in future work. Two of the resins previously described
will be used to fabricate composite panels using AS4 fabric preforms and will become the

baseline system in the development of E-beam VARTM resins.

Cationically cured systems are also being evaluated, with the most promising formulation
being VAEB-8, which exhibits resin shrinkage of less than 2%, a dry T, of 150 °C, and a wet Ty
of 125 °C. Composite laminates for evaluation will be fabricated using VAEB-8 injected at

55 °C into AS4 fabric preforms and E-beam cured.
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Work continues in the development of cationic VARTM systems to attain a better balance of

viscosity, pot life, and retention of an elevated-temperature modulus.

4. E-Beam Repair Adhesive Formulation

4.1 Introduction to E-Beam Repair Adhesive Formulation. The ability to perform
effective repairs of composite structures on military structures will be governed to a large extent
by the properties of the repair adhesives. Previous research [2] has shown that there are no
E-beam adhesives that match the performance standards of thermally cured epoxies. This may
be attributed to a number of factors. Notably, the inability to effectively toughen the E-beam
resins results in adhesives with poor resistance to peel and delamination. Hence, the
development of adhesives in this program mirrors the other E-beam resin development efforts in
that a major goal is to toughen the existing E-beam systems so that they can be used as structural
adhesives. Furthermore, adhesive materials must be available in a variety of product forms to
provide flexibility in repair and remanufacturing operations. These product forms include
two-part pastes, one-part pastes, supported and unsupported films, and low-viscosity liquids.
Initial efforts have focused on development of toughened two-part pastes and infinite-shelf-life
one-part pastes and films. To date, the greatest success has been in formulating two-part

adhesives based on the CCM series of IPN-based E-beam resins.

4.2 E-Beam Repair Adhesive Selection Criteria. The adhesives currently being used for
thin-walled structural repair will be evaluated to provide baseline property values. Most repairs
of these types employ either 250 °F or 350 °F curable epoxy film adhesives or two-part pastes.
These materials have been well characterized. Table 13 gives some typical target values for
adhesive formulations based on the properties of thermally cured adhesive baselines. The goal

will be to approach these performance target values for each relevant product form.

Critical properties to be measured and tabulated will include characterization of the adhesive
T, (dry and wet), elastic constants, strength, and toughness, as well as adhesive bond properties

for metal-metal, composite-composite, and composite-metal joints. The properties of the new
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Table 13. Adhesive Formulations

[ Property | Target Value
T, temperature . 95-105 °C
Service temperature 82-95 °C

Tensile modulus (RT) 3.0 GPa

Metal-Metal Bonds “

Lap-shear strength RT (Al-Al) 35-43 MPa
Lap-shear strength service 16-28 MPa
temperature

Floating roller peel 8-11 KN/m

I Sandwich peel 75-100 Nm/m

resins will be compared to those of the baseline thermally cured adhesives to assess relative
performance. The results of the mechanical testing will be augmented by corresponding

chemical and physical characterization of the resins.

Lap-shear strength for both aluminum-aluminum and composite-composite joints was thé
primary screening evaluation. Adhesives that matched or approached the performance of their
thermally cured counterparts were selected for further evaluation. This screening procedure also
permitted rapid feedback on performance deficiencies in certain instances. For downselected
candidates, the bonded adhesive joints will be evaluated using climbing drum peel (ASTM
D1781), lap-shear (ASTM D1002), wedge-crack extension (ASTM D3762), and other testing, as

deemed necessary, to gain confidence in the properties of newly developed materials.

4.3 E-Beam Repair Adhesive Formulation Approach. As discussed earlier, two major
classes of radiation-curable systems will be used in this program. These include the low-
shrinkage C-stageable free-radical CCM systems based on epoxy and urethane chemistries, as
well as the cationically cured CAT-M systems. During this task, activities will focus on
modifying these systems to improve fracture toughness. The team developed these systems by
formulating toughening agents into the base resins, as is typical of a second-phase toughener, 6r
via novel approaches to toughening based on resin chemistry, whereby flexible linkages are

incorporated into the radiation-curable resin backbone.
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The untoughened s-IPNs have good strength properties but are quite brittle. However, these
systems may be toughened through a number of methods. In thermally cured epoxies, toughness
is improved by the addition of rubber, which is chemically bonded into the network through
reactive end groups [3]. The rubber components that were studied for adhesives evaluation
included various butadiene-nitrile liquid rubbers, dendritic polymers, and preformed particles.
Also, suitable diluents were used to modify base formulations to control the viscosity of

formulated adhesives. Table 14 lists the modifiers and diluents that were used in this work.

Table 14. Modifiers and Diluents for Adhesives Formulation

| D | Description | Functionality J
M1 CTBN - Epoxy adduct Epoxy
M2 CTBN - Epoxy adduct Epoxy |
M3 CTBN - Epoxy adduct Epoxy 4|
M4 CTBN - adduct (low viscosity) Epoxy
M5 CTBN - adduct (low viscosity) Epoxy
M6 CTBN Carboxy
M7 ATBN Amine
M8 ATBN , Amine
M9 ETBN - styrene blend Epoxy - vinyl
M10 ETBN —
Mi1 Polester polyol — epoxy Epoxy
M12 Polester polyol — epoxy Epoxy
M13 CORE-shell acrylic —
D1 Low-viscosity methacrylate Methacrylate
D2 Viscosity D1-methacrylate Methacrylate
D3 Low-Viscosity mono methacrylate Methacrylate
CEl1 Epoxy chain extender —
CE2 Epoxy chain extender — il

Base resin formulations for the IPN-based adhesives were similar to those described earlier.
However, diluent and modifier selection were used to control processing and cure properties.
The diepoxide that was selected is the bis-phenol-A-based epoxy, EPON 828, provided by Shell
Chemical, Inc. Along with the selected bis (p-aminocyclohexyl) methane, PACM, the epoxy
demonstrates a T, of approximately 175 °C. This temperature is suitable for adhesive repair of

Army materials; however, the T, of the epoxy network can be increased through the addition of a
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high-function (tetrafunctional) amine or aromatic amines. PACM, an aliphatic amine provided
by Air Products, Inc., is selected because of the importance of the environmental impacf of the

resin formulations. PACM is less caustic and hazardous than alternative aromatic amines.

4.3.1 Epoxy Adhesive Toughening. As with most pure epoxy networks, the E-beam-cured
EPON 828/PACM/methacrylate network is very brittle. Consequently, the material is
inadequate for most adhesive applications. Improving the toughness of these s-IPN blends is
key to creating an alternative cure adhesive by this approach. Other research efforts have
demonstrated the challenges associated with toughening epoxy resins, especially cationic epoxy
resins that are cured through E-beam methods [2, 4]. However, toughening of brittle epoxy
networks has been accomplished by Kinloch, Riew, and others over the past decade [5]. The
body of work in toughening of epoxy networks has demonstrated that brittle thermosets can be
toughened without a significant sacrifice in T, through two approaches: the addition of rubber

and the addition of chain extenders.

The first method of toughening involves the addition of a second phase, commonly a rubber
or TP, to the thermoset. A functionalized rubber is added to the uncured epoxide/amine mixture
and co-cured with the epoxy network. During cure, the rubber becomes insoluble in the growing
epoxy network and separates into rubber domains. The small rubber concentration [6] in the
network causes discrete rubber particles (0.2-5 pm) to form inside the netWork [7-9]. These
rubber particles improve toughness by changing the energy absorption of the matrix and
inhibiting premature failure of the thermoset, which often results from small defects.
Alternatively, the second phase is added as rubber or TP particles. The size, surface binding, and
concentration of the particles greatly influences the toughness of the thermoset [7, 8]. Often, the
surface of the particles is coated with an adhesion promoter to enhance the interaction between
the thermoset and the filler. Generally, the addition of discrete particles for toughening is less

effective than the addition of reactive rubbers [3].

The second method of toughening thermosets is to add chain extenders to the network [9].

The average distance between cross-links is a key parameter governing the toughness of the
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network. Through insertion of a fraction of oligomers into the network, the average number of

cross-links per unit volume is reduced, providing greater flexibility to the network although

usually at the expense of the T,.

Toughening of s-IPNs has been evaluated using a reactive rubber and a reactive dendrimer.
Upon curing, both the rubber and the dendrimers phase-separate into discrete rubber domains.
Although cure conditions reportedly affect the formation of the rubber domain size and,
consequently, the overall matrix toughness, the impact of cure conditions has not yet been
evaluated in this study. A maximum toughness enhancement in a pure-epoxy matrix is obtained
with rubber loading between 8% and 12% by weight. Dendrimer suppliers report that optimum
toughness of epoxy formulas of these materials is also 10% by weight. For the purposes of this
report, a number of reactive rubber and dendrimer-like polymers were explored; the tested

materials are listed with their characteristics in Table 14.

4.3.2 Infinite Shelf-Life Formulation Methods. Base formulation of experimental one-part
adhesive resins is designed by controlling the extent of reaction of the epoxy matrix. The issue
of gelation in condensation-type reactions where monomer A-A reacts with monomer B-B and
B3N can be predicted and controlled. Gelation is the point when an infinite network exists. The
gel point can be predicted from the number and functionality of the monomers present in the

condensation reaction. The following is an example of a condensation reaction:
A+A + B3N < A-A-BNBB-AA-BBNB-,

where BsN is trifunctional (f = 3). The critical point for gelation (0.), defined as the point extent '

of conversion of “B” required to form an infinite network, is defined as follows:
o= 1/(f- 1).

Thus, controlling the extent of reaction conversion is achieved by controlling either the

amine functionality or the epoxy functionality of the system. A blend of mono- and
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multifunctional amines generates a high-molecular-weight soluble hyperbranched polymer. The
stability of such a molecule is dependent upon the reaction completion of the epoxide/amine.
Alternatively, monofunctional epoxides can be added to the mixture to decrease the probability

of infinite network formation.

Initial experiments demonstrated that limiting the epoxy network formation in EPON
828/PACM/dimcthacry1ate adhesives produces a processible material with high stability. The
epoxy network was thermally cured in the presence of the free-radical monomers to create a
paste-like substance. The amine was suitably end-capped to prevent premature gelation but
permit network formation during E-beam radiation. These materials were then evaluated for

shelf-life stability using FTIR. The results are reported in subsequent sections.

44 E-Beam Repair Adhesive Formulation Results. The toughness of model adhesive
formulation was evaluated using single-edge notch flexure specimens. The tests were performed
in accordance with ASTM D5045. The effect of 5% rubber addition to base IPN resins was, in
some instances, dramatic. The toughness was increased subtantially for many of the modifiers
that were examined. In two cases, toughness increased by nearly a factor of 2. Further research
is needed to optimize the toughness improvements in these resin systems, and this work is
presently ongoing. However, the ability to toughen these E-beam resins is significant and is a
major accomplishment to date. The improved toughness should have a direct impact on the
performance of joints produced using these modified resins. The mechanical properties of the
adhesives have been tested on composite lap-shear specimens. Prepared samples were tested as

both green and fully cured adhesive specimens. The results are shown in Tables 15 and 16.

From the mechanical data, it is evident that the bond Qtrengths of the E-beam adhesivés are
adequate. Composite failure was observed in all samples, except for CAOI, which is a one-part
adhesive formulation. The toughened one-part adhesive, CAO2, demonstrated both better
adhesive strength and better toughness than the untoughened case. The source of this

improvement has not yet been determined.
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Table 15. Double-Notch Lap-Shear Results

Sample ID Bond Strength Ty
I (&)
- RN R—
CAS 2000+100 PSI 120 II
CA6 2300100 PSI - 121
CAOl 1550+100 PST* 90°
CAO2 2000+100 PSI 38° |
I Dexter stol EA9394 _ 3200100 PSI 78
? Sample failed in the bondline. :

b Epoxy network not fully cured (FTIR).

Table 16. Lap-Shear Results

Sample ID Bond Strength T 1
| _ &9
CAl1 (2-pt) 2900+100 PSI 120 !
|| CA2 (2-pt) 2750£100 PSI 121
CA3 (2-pt) ' 3100+100 PSI 120
CA4 (2-pv) 3400+100 PSI 121
Dexter Hysol EA9394 37004100 PSI 78

The T, of each of these adhesive samples was also measured using DMA. The results are
also listed in Tables 15 and 16. The target T, of a 250 °F adhesive is well within the scope of
this effort. Work is currently being done to further increase the T, of the network by modifying

the acrylate network content and the ratio of epoxy to acrylate in the mixture.

Since these adhesives produced joints that exceeded the strengths of the composite
adherends, further tests were performed on aluminum-aluminum lap joints to determine the
ultimate properties of the adhesive. Aluminum (7075-T6) coupons were surface-treated prior to
bonding. The surface treatments employed were all chromate-free to maintain the goal of
environmentally friendly bonding and repair methods. In this case, the aluminum was etched

using the P-2 process. For comparison, joints were also bonded using commercially available
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adhesives. FM73 and EA9628 were selected as film adhesives, and E9394 was used as a

two-part paste formulation.

The results of the aluminum-aluminum lap-shear testing (Table 17) are very encouraging.
The strengths are higher than what has been reported for previously developed E-beam
adhesives. They also approach the film-adhesive baselines. The large degree of scatter must be
addressed during production of our best candidate materials. Failure analysis of the joints

revealed less than consistent degrees of cure, indicating uneven E-beam irradiation. This issue

will be addressed during future work.

Table 17. Joint Strengths of Aluminum-Aluminum Single-Lap Joints (D-1002)

Sample ID Lap-Shear Strength T,
Ma3 3000 127
MA4 3130 120
MA5 3700 115
MAG 5627 118
MA23 2793 100 4I
MA24 1829 106
MA43 1183 87
MA73 2503 99
Hysol EA9394 3000 78"
Cytec FM73 5875 116" i
Hysol EA9628 5670 122°

®Material safety data sheet. Hysol EA9394, Dexter Aerospace Materials Division,

Pittsburg, CA, 1997.
bChester, R.  Personal communication. Aeronautical and Maritime Research

Laboratory, Melbourne, Australia, 1998.
“Product data sheet. Hysol EA9628, Dexter Aerospace Materials Division, Pittsburg,
CA, 1997.

4.5 E-Beam Repair Adhesive Conclusions. Future efforts will concentrate on optimizing
the downselected resin formulations to achieve the desired joint properties. Specifically, the
base adhesive resins will be reformulated and more joints will be produced to expand the

existing database and reduce the inconsistency of the joint strengths. These optimized resins will

42




be further formulated to include fillers, adhesion promoters, thixotropes, and other materials used

in traditional adhesives.

Research must also continue to develop improved one-part film adhesives. In the first year
of the program, the feasibility of shelf-life-stable one-part resins was demonstrated. This
approach must be continued to provide stable adhesives with performance comparable to the
two-part resins described here. These efforts are underway, and some promising candidate
systems have been derived. Once these materials have been produced, appropriate product forms

will be produced and distributed for evaluation of properties.

Further mechanical evaluation of optimized adhesive joints will be performed. These will
include testing at elevated and subambient temperatures, fatigue, and joint fracture toughness.
These data will provide added confidence in the properties of these adhesives and allow for
comparison to traditional thermally cured adhesives. Furthermore, work will continue to monitor

the aging characteristics of these resins to assess their shelf life.
5. Resin Aging Study

5.1 Introduction to Resin Aging Study. Many adhesive and composite material systems
cure slowly during storage prior to use, as discussed in section 2.3. For these systems,
processing and performance requirements can be met only within the designated storage period
or shelf life (Figure 21). Shelf life is generally documented under a required level of reduced-
temperature storage. Shelf-life restrictions are determined for each resin system by evaluating
changes in the characteristics of the resins or components of two-part resin systems under
various storage conditions. The limitations are based on maintaining characteristics that allow
suitable processability and quality of the cured materials. Resins or components of resin systems
that have exceeded shelf life are partially cured, can no longer be used, and are considered

hazardous waste.
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Figure 21. Shelf Life Expires When Material Processing Characteristics No Longer Meet
Specification Limits.

Common materials used for composite repair in DOD applications are one- and two-part
epoxy adhesives and resins, epoxy film adhesives, and glass- or carbon-fiber/epoxy prepregs.
The one-part systems have all the materials needed to achieve full cure and must be stored under
controlled-temperature conditions to slow the curing process. The two-part systems must be
mixed to cure at expected rates; however, the epoxy part (Part A) can cure by itself, although at a
slower rate. Shelf-life limits for these materials are typically 6-12 months. The new
formulations are designed for cure by E-beam or induction processing and should have an
extended shelf life. In particular, the formulations for E-beam cure are expected to have an

infinite shelf life. An aging study is being performed to verify these expectations.

5.2 Approach to Resin Aging Study. In the context of this repair effort, aging studies to
identify the changes in characteristics of the resins and components are relevant to evaluating the
shelf-life capabilities of current materials and proposed replacement materials. In this study,
extent of cure is being determined at room temperature for current commercial adhesives, films,
and prepregs that are used in repairing polymeric composites in defense applications. Resin
systems formulated at the U.S. Army Research Laboratory (ARL) and University of Delaware,
Center for Composite Materials (UD-CCM) that could potentially be used in Army repair
applications are also Vbeing evaluated. Evaluation of existing resin systems was initiated when
the relevance of the materials to the study had been determined. Resin systems formulated as -

part of the repair program are integrated into the aging study on an ongoing basis. Consequently,
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materials are aged for different amounts of time based on when they were integrated into the

study.

The approach used in this study is to monitor the degradation of a particular functional group
that is important to the shelf life of that particular sample. To monitor this degradation of a
functional group, FTIR spectroscopy is applied. In FTIR, each excitation mode (vibration,
stretching, overtone, etc.) of a chemical bond in the sample absorbs energy at a characteristic
wavelength. The change in intensity of absorbance is related to the change in concentration ofa
chemical functional group. At first, the mid-infrared (MIR) range, 4000 cm™! to 400 cm™}, was
used to monitor the samples. Due to the spectral overlap that occurs in this region for the amine
peak, the near-infrared (NIR) spectrum, from 7000 cm”! to 4000 cm™!, was used to monitor the

amine peak. Eventually, NIR was also used to monitor epoxy and acrylate peaks.

The materials currently in the aging study are listed in Table 18 with reactive functional
groups and approximate excitation wave numbers monitored. The functional groups of

particular interest for the resins in this study are primarily amines, epoxies, and acrylates.

Table 18. Aging Study Materials

Sample Source Functional Wave
_ _ | Group | Number ]

9390 part A of two-part epoxy Hysol Epoxy 916
system
9390 part B of two-part epoxy Hysol Primary 6510
system Amine
AF163-20ST epoxy adhesive CytecFiberite Epoxy 916, 4530
film
9628.045 PSFK epoxy adhesive | Hysol Epoxy 916, 4530
film
R6376 epoxy prepreg Northrop Epoxy 916, 4530
JDW71 one-part Army Research Methacrylate 945, 6150
epoxy/methacrylate Laboratory
JDW72 one-part Army Research Methacrylate 945, 6150
epoxy/methacrylate Laboratory
SBIR-ARL1 one-part epoxy Merlin Technologies, Inc. | Epoxy | 916
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The sample preparation could differ slightiy, depending on the initial state of each material
(prepreg, adhesive film, liquid resin, solid resin) and the range of wave numbers used. As shown
in Figure 22, all the samples are compressed between two 25-mm-diameter NaCl transparent
crystal windows. For liquid resin systems, except for SBIR-ARLI, no additional preparation
was needed before placing the sample on the crystal. In the MIR range, the adhesive film
samples and the prepreg sample were diluted in acetone. The resin/acetone solution was then
added to the crystal, and the acetone was allowed to evaporate off the crystal, leaving only the
resin. The SBIR-ARLI resin system was also diluted in acetone before being placed onto the
crystal because the sample is not a liquid but a solid. A spacer was used between the crystals to
regulate the thickness of each sample and to reduce evaporation losses. For the MIR range, a
Teflon spacer was used for all materials. For the NIR range, a lead spacer was used for resin
systems and no spacer was needed for adhesive films. After the sample was compressed
between the NaCl crystals, it was placed in a cell holder for the duration of the study. At
appropriate intervals, spectra were obtained to evaluate extent of cure. Between measurements,

the samples were stored in a desiccator at room temperature.

CELL
HOLDER

SAMPLE
PLACEMENT
HOLDER
SPACER AND |

SAMPLE

IR BEAM Na Cl PLATES

Figure 22. Exploded View of Sample Between NaCl Windows in the Sample Holder.
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5.3 Results of Resin Aging Study. The effects of aging are evaluated using the fraction
converted or extent of cure based on heights of significant peaks in the absorbance spectra.
Figure 23 serves as an example for the AF163-20ST adhesive file. The peak at a wave number

of 916 cm™ ! is monitored as a function of time with a notable reduction in height.

0.35°
AF 163-20ST Adhesive Film
£0.30 |
(¢
S
(1]
2
80.25 Epoxy Peak
< - 0 months — poxy Fea
0.20°
0.16°
Increasing Time ,
0'10'1"‘I"‘T"'l“"I“‘l"'l"”"‘”’":“l'
1020 1000 980 960 940 920 900 880
Wave Numbers (cm™)

Figure 23. MIR Absorbance Spectra for AF163-20ST Adhesive Film. Note the Reduction
in the 916 Peak Over a 5-Month Period.

To quantify the results, peak height relationships vs. time are studied using the following

formulas:

ot)y=1- A(tYA0) (NIR: 7000 cm™* to 4000 cm™?),

and
o(t) = 1 = AYA(D) ® Ars (0)/Ars(t)  (MIR: 4000 cm™' to 400 cm” b,
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where

o = fraction that reflects extent of cure,

A = absorbance peak height of the reactive functional group,
t = time, and

A.s = absorbance peak height of a reference peak.

In the IR range, evaporation and dimensional changes could have a profound effect on the
results; therefore, a reference peak is used. The reference peak selected should be a peak of a
particular functional group within the sample that does not have any reactivity. In the NIR
region, no reference peak is needed, since evaporation effects are reduced and dimensional
changes are small. Changes with time are addressed by using the baseline method. For NIR,
transmittance is assumed to be constant or to vary linearly between the shoulders of a peak.

Changes in the transmittance are treated as being uniformly affected by time.

Results to date for the aging study are shown in Table 19 for the MIR range and Table 20 for
the NIR range. Sources of variability for these data include ambient effects on the specimen
during sample preparation, any changes in the desiccant over time, and changes in the crystal
windows over time. For example, the NaCl windows can become fogged with absorbed
moisture [10]. For short-term projects (one day), such effects are negligible; however, for
long-term studies, these effects may be significant. Variability of +5-10% is not uncommon in
FTIR spectroscopy. Dimensional changes affect the results, and these changes tend to be more
signiﬁcant for MIR, where typical cell thicknesses are 0.01 to 1 mm, than for NIR, where cell

thicknesses range from 0.1 to 10 mm [10]. The response of the material to each type of analysis

varied; so, each material is discussed separately with observations regarding variability.




Table 19. Extent of Cure for MIR Range Observations

" Products B " Time -
(weeks)
_ 1-2 46 [ 810 | 12-14 | 16-18 | 20-22

Hysol 9390 part A of 0.0 13 | 100 | 158 | 135 | 219

two-part epoxy system

AF163-20ST epoxy 211 | 256 | 362 | 532 | s62 | 733

adhesive film

Hysol 9628.045 PSEK s4 | 00 | 00 | 75 | 00 | 111

epoxy adhesive film .

R6376 epoxy prepreg 15.6 57.0 70.8 78.0 77.1 —

JDW71 one-part 0.0 0.0 0.0 . . .

epoxy/methacrylate

JDW72 one-part 00 | 00 | 00 | — | — | —

epoxy/methacrylate

SBIR-ARL1 epoxy 29 3.1 — — — | =

Table 20. Extent of Cure for NIR Range Observations
Products B " Time —

(weeks)

_ _ [ 12 | 46 | 810 | 12-14 | 16-18 | 20-22
Hysol 9390 part A of 15 | 0% | 53 | 18 | — _
two-part epoxy system
Hysol 9390 part B of 1.1 27 | 32 | 43 6.9 5.9
jtwo-part epoxy system
IAF163-20ST epoxy .
dhesive film 13.2 25.9 37.9 — —

Hysol 9628.045 PSFK

epoxy adhesive film 4.4 8.5 4.4 0.0 2.0 —
[R6376 epoxy prepreg 16.6 44.5 36.6 46.4 —
TDW71 one-part

epoxy/methacrylate 3.0 | 6.1 T - o —

5.3.1 Hysol 9390. Hysol 9390 is a commercial two-part epoxy system. The two parts,
Part A containing epoxy and Part B containing amine, are both liquids that are mixed prior to
use. Part A can begin to cure without the addition of Part B, causing the primary limitation on

shelf life for this system. Part B is expected to have less effect on aging. Part A was evaluated
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using both MIR and NIR. In both cases, significant changes in the spectra are observed,
although at different times. The NIR results lag behind the MIR results, and differences in the
sources of variability may have an effect on the cure timeline. Hysol 9390 Part B was evaluated
using the reaction of an amine functional group. Due to the spectral overlap that occurs in the
MIR region for the amine peak, only the NIR spectrum was used. Only small changes are noted
in the NIR results for Part B. More rapid changes would be expected following mixing of the
two parts for Hysol 9390.

5.3.2 AFI163-20ST. AF163-20ST is a commercial adhesive film. For MIR, the film was
dissolved in acetone and the solution put on the NaCl window and allowed to dry. For NIR, a
piece of the film was placed directly on the NaCl window. Results from both MIR and NIR

show significant effects of aging on the extent of cure.

5.3.3 Hysol 9628.045 PSFK. Hysol 9628.045 PSFK is a commercial adhesive film.
Hysol 9628.045 PSFK has not aged significantly, and the results fluctuate. The aging of this
sample is somewhat surprising. The sample contains both epoxy and amine; therefore, aging
should occur at a more rapid rate. One explanation for the fluctuation in the results fof this
sample and others is that the baselines for the peaks under study change over time, causing errors
in quantifying the results. In the MIR spectra for Hysol 9628.045, there is a clear indication that
the baselines have changed. Effects of the acetone solvent drying may be important. Future

work includes the same specimen preparation for MIR with a thorough drying procedure in a

vacuum oven.

5.3.4 R6376 Prepreg. R6376 prepreg is a reformulation of an epoxy prepreg. Significant
effects of aging on extent of cure are observed in both MIR and NIR. Greater variability in the
NIR results may be due to a thinner specimen than is desirable. For both wave number ranges,
the specimen is prepared by dissolving the resin from the prepreg and then drying the solution on
the crystal window. This produces a specimen of appropriate thickness for MIR but a rather thin

specimen for NIR.
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5.3.5 CAOI. CAOI1 is a one-part epoxy/methacrylate system formulated at ARL. No
changes were observed in the MIR range. Variability was high in the NIR range (most likely an
effect of significant effects in the baselinej. There is a concern regarding the peak selected for
measurement. Based on Horalek et al. [11], a double-bond acrylate peak is being evaluated, but

more study is needed to confirm this selection.

5.3.6 CAO2. CAO?2 is also a one-part epoxy/methacrylate system formulated at ARL. No
changes were observed in the MIR range. NIR evaluation of this material was begun at the same
time as the CAO1 material, and the effects of baseline variability were so pronounced that no

measurements were recorded.

5.3.7 SBIR-ARLI. SBIR-ARLLI is a one-part epoxy formulated by Merlin Technologies,
Inc., as part of an SBIR program with ARL. Initial results may indicate changes in extent of cure

based on MIR observations. No NIR measurements are available for this material.

5.4 Resin Aging Study Conclusions. Preliminary results indicate that new formulations
show promise to provide extended shelf life. In several cases, these are very preliminary
conclusions, as the new formulations have been part of the aging study for relatively short
periods of time. The aging study will continue into the next year of the program and will include
downselected materials that have been formulated. As part of the aging study, work will
continue on evaluating the effect of solvents, such as acetone, in the specimen preparation for

MIR and on the effect of baseline drift.
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